
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP021388
TITLE: Joint Synthetic Battlespace [JSB] Technology and Infrastructure
Consideration

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: International Conference on Integration of Knowledge Intensive
Multi-Agent Systems. KIMAS '03: Modeling, Exploration, and
Engineering Held in Cambridge, MA on 30 September-October 4, 2003

To order the complete compilation report, use: ADA441198

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP021346 thru ADP021468

UNCLASSIFIED

KIMAS 2003 BOSTON, USA

Joint Synthetic Battlespace (JSB) Technology and
Infrastructure Consideration

David Kwak, PhD, ESC/CX-MITRE, 781-271-6431, dkwaktmitre.org
Lt. Col. Emily Andrew, ESC/CX, 781-377-6421, emily.andrewohanscom.af.mil

Capt. Jack Murtha, ESC/CX, john.murthaahanscom.af.mil
Capt. Lucas Flanagan, ESC/CX, lucas.flanaganhanscom.af.mil

Lt. Denise Herrera, ESC/CX, denise.herrera(,hanscom.af.mil
Lt. Don Brown, ESC/CX, don.brownahanscom.af.mil

15 Eglin St, Hanscom AFB, MA, 01731, USA

Abstract- Creating all components from scratch is Joint Synthetic Battlespace was the simulation chosen for
impractical for the Joint Synthetic Battlespace (JSB) due to GSTF, and it will become one of the enabling technologies
the huge scope that JSB needs to cover. Spanning training, that support development of new systems and migration of
acquisition, test and evaluation, and research and the existing systems toward full realization of the GSTF
development, JSB supports the DoD from the detailed vision.
engineering level, entity level, mission level, to the
operational and strategic levels, while supporting Therefore, the JSB's mission allows for integration of both
community users. Thus, the JSB must leverage all existing legacy and newly developed simulations. Current
investments to the fullest extent possible. It is expected simulations suffer from effects of stove-piped development,
that existing simulations cannot cover some of the JSB and they do not interoperate well with other simulations.
space even though all the existing components are fully Most of existing simulations have been created to support a
integrated under the JSB infrastructure. The missing pieces narrow specification. The simulation world is significantly
will need to be created to achieve the goal and vision of the fragmented and, as it is, it lacks the capability to support the
JSB. The JSB will therefore be a combination of legacy highly integrated and complex GSTF. It is commonly
simulations and the newly created JSB components in known that any integration efforts are greatly hampered by
future. This paper discusses the JSB component integration implicit and explicit design assumptions and
framework that facilitates integration of the existing legacy implementation limitations associated with the existing
simulation systems as well as one of the new JSB simulation systems.
components, the JSB Common Synthetic Environment (JSB
CSE). It also presents the on-going High Performance Joint Synthetic Battlespace (JSB), thus, does not suggest yet
Computing (HPC) applications of the JSB as its computing another simulation. It is a common simulation architecture
infrastructure, and core services, and it is capable of integrating current and

future simulations while supporting USAF needs from
1. INTRODUCTION acquisition, research and development, training, and mission

planning to mission rehearsal. This paper briefly describes
In USAF, there is a newly emerging need to support the JSB vision, and the conceptual instantiation of the JSB.
development, acquisition, and deployment of Task Forces. Then the discussion of the JSB Integration Framework
Global Strike Task Force (GSTF), one of the USAF Task follows. The JSB Beowulf cluster and JSB visual
Forces, requires fully integrating all existing and newly requirements will be also discussed.
developed systems to achieve the new level of synergistic
capability. GSTF, thus, effectively becomes a seamlessly 2. JOINT SYNTHETIC BATTLESPACE VISION
integrated system of weapon/C4ISR systems. However, the
currently available systems have been essentially developed The Joint Synthetic Battlespace is an on-demand, integrated
in a stove-piped fashion, and now they are obstacles environment and operational battlespace, able to selectively
preventing the full vision of GSTF. Therefore, newly accommodate different functional applications at varying
developed systems have to be explicitly conceptualized, levels of detail using common components. While the detail
designed and constructed as a part of the bigger GSTF of the CONOPS of JSB is available as a separate document
context, and the existing systems have to be integrated in the [I], four areas are briefly presented here:
GSTF. GSTF does not exist now, but it can be created with
computer simulation. A New Problem Space Is Emerging

Traditional military systems have been designed for a
narrow application domain, as is the acquisition process.

KIMAS 2003, October 1-3, 2003, Boston, MA, USA. However, future weapon systems, such MC2C (Multi
Copyright 0-7803-7958-6/03/$17.00 © 2003 IEEE. Command and Control Constellation) and JSTF (Joint

256

KIMAS 2003 BOSTON, USA

Strike Task Forces), are different. They are essentially a whose size would easily draft the size of current joint
system of systems with an unprecedented complexity generation simulations such JSIMS (Joint Simulation
because of the combinatorial complexity of behavioral System). JSB needs to support both acquisition and
interactions among them [2]. Technical and operational operational users, whereas JSIMS is designed to support
testing as well as evaluations performed, as a part of military training only. In fact, training is merely a small
acquisition process have to be matched the level of subset of military operational usages. It is commonly
sophistication accordingly. The cost of the future systems understood that the current state of art simulation
will be much higher than now. Thus, a sophisticated technology will not allow for a single monolithic system
simulation-based acquisition (SBA) process becomes that meets all the requirements of the JSB.
critical, which is capable of supporting full life cycle of all
acquisition process and beyond. This is the vision of JSB. A JSB will be, thus, instantiated from a common JSB

reference architecture, and each instance will be able to
90% of solutions are out there. meet its specific needs, such as military training, acquisition

decision, concept development, etc. That is, there will be no
JSB will not be built from scratch, but will be largely single JSB simulation system, but multiple JSB instances
composed of existing simulations. ESC's (Electronic constructed as needed. This insatiable simulation system,
Systems Center) preliminary analysis shows that 90% of the which is an innovative approach, will truly make JSB
solutions are out there waiting for construction of the JSB. different from existing DOD simulations, and the full extent
Figure 1 depicts the Command Enterprise Integration of JSB requirements will be fully satisfied by the JSB
System (CEIS) Government-Industry Partnership that is instances collectively.
directly applicable to JSB.

As shown in the figure, a JSB instance is a product of JSB
They are not interoperable. system engineering process. The JSB system engineering

process is tightly coupled with the JSB executable
Although many relevant simulations already exist, they do architecture. The JSB Executable Architecture allows for
not generally interoperate because they were created to early exploration, investigation, and design of internal
serve their own needs. Incompatible requirements, structures and controls flow of the target JSB instance
architecture, technologies/standards (some of which are without actual internal simulation components. Inputting
homegrown) are the main obstacles. Ad hoc integration
approaches have been tried, but success has been limited. A
new and systematic approach that is able to take advantage
of full potentials of the existing investments while meeting
the new vision of JSB is a must.

Legacy & New

They need a common environment. Systems

True interoperation is more than just having a common Requiements

interface scheme. A common interface essentially means a Technologies

common data exchange protocol which only resolves the
syntactic differences among them. Each simulation comes
with its own baggage: different objectives, assumptions,
limitations, resolutions and fidelities. These hidden Figure 1: JSB Overarching Framework
(semantic) differences bring in a real challenge. It is raw materials of the above JSB process are legacy and new
necessary to create an environment where they can resolve simulation systems, users' requirements, and existing and
those semantic differences. As a common understanding new technologies. The JSB Integration Framework
between humans, having different ideas is a pre-requisite for provides an actual means to put together the JSB internal
meaningful communication. JSB needs a common components following the overall structure and the control
environment through which multiple simulations can flow captured in the JSB executable architecture. Finally,
communicate. A correlated multi-spectrum environment, the JSB IDE (Integrated Digital Environment) facilitates
for example, allows for consistent operations of multiple storing, retrieving, moving around data/artifacts/knowledge
sensors in simulation. Another important area for JSB is generated, used, and acquired by internal processes of the
creation of an integration frame for JSB through a common above Overall JSB Framework. That is, the JSB IDE
contextual understanding, which is described in this paper. becomes an ultimate repository and tool for JSB system

configuration management, documentations, program
3. JSB OVERARCHING FRAMEWORK management, collaboration, distributed manufacturing of

JSB instances.
JSB will not be a single, monolithic simulation system that
satisfies all of the JSB requirements described above. If it A series of documents required to create a specific JSB
were, the JSB would be an enormous simulation system instance is supported by the JSB in the central knowledge

257

KIMAS 2003 BOSTON, USA

repository of the IDE. That is, a user requirement alternative. It is also tree that this manual process has been
document, technical document, program management focused on standardization on manifestation of knowledge
document will be generated from the central knowledge on papers, rather than the standardizing of storing the source
repository. IDE's multiple view generation capability knowledge. Thus, reusing the captured knowledge at the
supports semi-automated creation of multiple documents source level could not have been achieved at all. In reality,
from a single central knowledge store in the IDE. After all, many documents have been historically created to simply
those documents are multiple views (i.e., manifestations) of satisfy a documentation requirement of a given process
a common knowledge that requires for an instantiation of a rather than to facilitate knowledge transfer. There is little
specific JSB instance. chance to expect a significant change in the near future to

having a truly re-usable knowledge representation among
Presently, human authors manually create the documents, the document generation groups.
Collecting necessary knowledge by parsing the existing
document, adding additional knowledge, and assembling There is an emerging technology in this area, and the JSB
them in a specific format, a target document is created. For IDE is such a technology. It supports standardization of
example, JSB CONOPS (Concept of Operations) is one of knowledge representation, and provides tools and utilities
the JSB documents, and is manually created by a group of for capturing, manipulating and extracting various views
people. The JSB IRD (Interim Requirement Document) is and formats. Once knowledge is electronically captured in
subsequently created by another group of people. JSB the tool rich environment, it becomes much more powerful
CONOPS, the baseline document is manually parsed to than any textual form of knowledge, which is static and not-
form a knowledge base, and new knowledge specific to JSB easily transformable. Unpacking and packing knowledge
IRD is added to the knowledge. If the first group of the stored in conventional documents are undeniably time
people, who created the JSB IRD, do not involve in the JSB consuming, but the JSB IDE will allow for a direct
IRD generation process, a large portion of the valuable management of knowledge, and automatically maintain the
knowledge collected and created during JSB CONOPS evolution of stored knowledge.
creation process is lost. The knowledge captured in a form
of a JSB CONOPS document is really limited compared to When the above IDE knowledge approach is fully adopted,
the knowledge actually captured by the first documentation JSB instance creation will be greatly facilitated. JSB system
group. In reality, most of the knowledge is simply stored in engineers will directly interact with the knowledge in a form
the brains of the humans participating in the documentation that they need rather than passive documents written on
process. After the CONOPS generation process, the paper. Moreover, the JSB IDE will support a backward
knowledge captured in the human brains has little chance to compatibility so that the knowledge in the central JS13 IDE
be carried over to the subsequent JSB IRD generation repository will support semi-automatic creation of paper
process unless the same people are involved. Although the documentations mandated by DOD.
original group has been involved, the temporal gap between
the two document generations undermines the effectiveness The captured knowledge in the JSB IDE does not just
of communication. The current form of the CONOPS is, facilitate creation of mandated acquisition documentations,
after all, one of the best known means to capture the but also directly supports other functionalities that required
knowledge; however, it is certainly a narrow channel for supporting instantiations of JSB instances. The JSB IDE's
transferring knowledge. Again, there exists inefficiency of multiple view of the central knowledge repository is capable
restoring the knowledge captured in the CONOPS by of generating other documents and information such as
reading the CONOPS document, reassembling the engineering, managerial, and financial aspect of JSB.
knowledge base in the human brains, and creating the new Again, all of the knowledge is captured in the central
JSB IRD documentation. repository, and evolves together. Thus, although vastly

different documents and artifacts are generated from the
During the above parsing and reassembly process, new central repository, the JSB IDE will automatically maintain
knowledge is obviously added. As new documentation is consistency across all of the documents that are generated
created following the process of creation of a JSB instance, from the IDE. Traditionally, maintaining consistencies
the size of accumulated knowledge is increased as well as across totally disjoint groups of people such as financing,
the size of the documents. Thus, the inefficiency of management, engineering, etc has been a difficult and time-
unpacking and packing knowledge from one document to consuming task. The JSB IDE will vastly improve this
the next is also increased. This process would continue problem.
until a complete set of documentation becomes available to
build a JSB instance. 4. JSB INTEGRATION FRAMEWORK (JSB IF)

This above conventional manual knowledge accumulation The JSB Integration framework permits JSB to have true

process is manually intensive. Even so, the current process plug and play architecture. The internal structure of the JSB

focuses on manual creation of written documentations partly Integration framework is shown in Figure 2.

because it is a familiar form of knowledge capturing since
the invention of writing and partly because there is no other

258

KIMAS 2003 BOSTON, USA

The ultimate goal of JSB is to rapidly instantiate JSB rate of Moore's law [4] predicts especially in recent years.
instances by integrating existing (i.e., legacy) simulation Literally, in the last 10+ years, the entire Web industry was
systems and models to a target JSB instance. Creation of a established and exponentially flourished while creating
new component will be limited to a situation that no legacy enormous business opportunities on the Web. Therefore,
simulation system/model supports the required synchronizing the JSB computing and network
functionality. Therefore, creating a JSB instance becomes a infrastructures with the commercially available technologies
composition task rather than an ordinary production task. is a wise tactic for the JSB Integration framework. The
This concept has been metaphorically captured as Lego bottom two JSB infrastructures will automatically upgrade
pieces or Ga me Machine and Game Cartridges [3]. by huge investments from the commercial industry, and

enjoy the fruits from the investments without requiring
SB Interatia extensive DOD investments on the bottom two JSB

infrastructures.

On the other hand, for the top two layers, there is little
reason why the commercial sector would invest heavily in
these technologies because they are quite specific to JSB.
Thus, these two layers will be developed by JSB
investments. Again, whenever possible, commercial

L & E bA rtechnologies will be heavily leveraged for the top two
", .layers. The JSB Integration Infrastructure (JSB 12) is

Roquime'ni • uniquely designed to allow for integration of legacy

T•chnolI ;i simulation systems regardless of their protocol and
standards (i.e., ALSP, DIS and HLA/RTI) into a JSB

- instance. JSB 12 also should facilitate integration of new
JSB compliant simulation models, components and systems.

Figure 2: JSB Integration Framework is composed of The JSB 12 turns virtually any simulation components
computing, network, integration and plug-and-play (legacy or new) to a JSB compliant plug and playable

infrastructures, components. Finally, the JSB Plug and Play architecture

provides a true plug and play capability of JSB compliant

Historically, many approaches, architectures, and protocols components. Therefore, the top two layers are unique to the

have been introduced to achieve the Lego style Plug-and- JSB Integration framework, and together with the bottom

Play capability for simulation systems, but they are fall two layers, a truly plug and play architecture is constructed.

short of the fullness of the true plug and play capability. The details of the top two layers will be discussed in later

Often a proposed plug and play scheme is too manually sections.

intensive, or the scope is too narrow to practically cover the
whole simulation system composition issue while really 5. COMMONLY USED INTEGRATION APPROACHES

saving significant level of efforts on creation of simulation Before discussing the details of the JSB IF, three commonly
systems. The JSB Integration framework precisely used integration approaches are presented to constitute a
addresses these issues. The JSB Integration framework common point of departure toward JSB IF discussion in
divides the plug and play problem space into four sub- later sections.
spaces called: computational infrastructure, networking
infrastructure, integration infrastructure, and plug and play The first approach is Common Interface Based Integration.
architecture. Traditional system engineering falls in the first approach.

All of the internal components are precisely defined and
In this document, the focus will be given to the top two controlled by a strict engineering process. For example, the
layers. The bottom two layers - JSB Computing and JSB entire interface definition of all participating components is
Network infrastructures - will extensively leverage clearly pre-defined. It is usually captured h an interface
technologies developed and matured by the commercial control document. Creating a complete set of static
industry. Each year, computing capabilities of computing interface definitions is a rather natural process because the
hardware have demonstrated explosive improvements on functions of the internal components are statically definable
their performances. The Moore's law often explains this except small changes in later parts of the system life. Thus,
phenomenon. For example, Intel-architecture based PCs the internal components can be manufactured under precise
have closely followed Moore's law for decades. The storage system engineering utilizing the pre-defined
size of internal disks and storage area networks has also system/subsystem definitions and interface specifications.
increased following the similar pattern. In the simulation world, JSIMS (Joint Simulation System)

falls in this category. That is, all of the JSIMS components
The network infrastructure is another area that has been have to confirm the JSIMS interface specifications before
making remarkable progresses. In some sense, the growth integration into JSIMS. The picture depicts this fact by
rate of the network infrastructure has been surpassing the

259

KIMAS 2003 BOSTON, USA

making all components in a same circle shape, and the the modification on an existing system. Original
external component joining in has the same circle shape. manufacturers often have to be involved in this modification
Due to the strict traditional engineering process (i.e., all process.
components are made to confirm the given standards), the
time scale of construction of such a system tends to be long. The middleware-based integration eliminates the above
A typical time line is about 5 years and more. surgical modifications. It simply adds new middleware as

needed. In the Web/IT (Information Technology) world,
this approach has been widely accepted and achieved greatCommon Interface Based Integ~ration

• All components must confirm the single system successes. There is a recent movement to duplicate the

wide standard, successes in the domain of simulation integrations. A

* Good for a stable system integration typical timeline of this approach is shorter than the Ad Hoc
* Traditional system engineering mainly falls in Interface modification approach.
this category.
"* Ex) JSIMS, etc 6. JSB INTEGRATION INFRASTRUCTURE (JSB 12)
"* Timeline: > 5 years

JSB Integration Infrastructure is not one of the above

A Component system are modified for integration, integration approaches. Only has it a similarity with the

* Good for supporting coarse level ad hoc system above middleware. To facilitate our further discussion, a
integration comparison is made drawing in Figure 4.

* Lab style experimentation/prototyping is in this
category. The pros of the middleware approach have discussed in the
Ex) MC02, etc previous section. Thus, the cons are presented here. First,•Timeline: about I year the middleware interfaces are usually constructed manually,

Middleware Based Integration and they are created case-by-case due to the point-to-point

• Middleware is created as needed. nature of connecting two adjacent
Good for system integration without modifying components/models/systems. Therefore, the total number of

components the middleware creations quickly rises (i.e., in a geometric
- Most of Web/IT based integrations fall in this fashion) as the number of components increases. The
category. theoretical upper bound of the required middleware
Ex) Web based SIM, etc constructions is an order of Nf, where N is the number of
* Timeline: < 1 year components/models/systems to be integrated.

Figure 3: Three Commonly Adopted Integration
Approaches Another common aspect of the middleware approach is that

they are constructed as a simple translator from one value of
an originating system to another for the other receivingAnother commonly used approach is Ad Hoc Interface sse.Ti on-opittasaini neett h

Based Integration. This approach is often adopted by a lab system. This point-to-point translation is inherent to the
middleware, and it assumes one value of a system always

style experimentation/prototyping. Unlike the above matches with another value in the other system. Contextual

approach, interfaces of the components have not been aspes with a r vale in sometem .Contic al

manufactured under a single pre-defined interface aspects, which are usable and sometimes critical for a

specification. Therefore, most of the participating The Middleware Based Integration
components/models/systems do not interoperate as they are. - Pro: no modification of components
Case-by-case surgical interface modifications are needed. - Cons
This integration approach is usually adopted to create a Mainly manual process
temporary experimental system. MC02 (Millennium Middleware Integration Limited to mechanical interface translations

temoray epermenal ystm. CO2(MileniumOrder N'problemt
Challenge 02) modeling and simulation system is a good JSB Integration Infrastructure (JSB 12)
example. The time span for such integration is about one - Ontology based integration
year or less. Largely automates the manual process

Semantics oriented interoneration- Not limited to mechanical tanslation, such as table

Recently, middleware based integration is gaining its lookup

popularity. The advantage of this approach is not requiring Maximizes use of open standards and technologies
Order N problem

modifications on the participating Reduces the integration time to less than I month
components/models/systems. In general, modifying a

working system is not a favorable approach. It is- a well- ontology Integration

known fact that a software system modification itself is a Figure 4: JSB 12 is better than the middleware based

source for introducing unwanted bugs in the previously integration approach

working system. Additionally, a proper modification subsequent chain of translations, are rarely considered and
requires an in-depth knowledge of the
component/model/system because of the surgical nature of

260

KIMAS 2003 BOSTON, USA

implemented'. Therefore, the middleware essentially associated with leg pieces, such as castle, truck, human
becomes a table lookup operation. If data in one system is solider Lego blocks, etc.
translated to one of multiple possible values in the other
system, then this approach is not applicable. A middleware On top of the above syntactic interoperation, a semantic
approach, which. is a context-free one-to-one translator, interoperation is implemented, which is the ontological
cannot handle this complex situation. portion. The current choice for the semantic representation

is XML (eXtensible Markup Language). XM L is also a
One-to-many translations are commonly performed in logical choice. This choice matches with the current trend
human language translations. Due to semantic structural of DOD, which encourages using of XML as system
differences of two languages, one representation (i.e., one interface data representations.
meaning such as a word, a phrase or a sentence) in one
language often has multiple representations in another XML is not a just one standard of representation of data, but
language. Therefore, there is a low applicability of it comes with a family of utilities such as XSLT (eXtensible
mechanical translations of human languages. Non- Stylesheet Language Translation), which allows for point-
determinism should be resolved by a common context to-point XML translations. XML and its family of utilities
between two languages. It is common that machine really facilitate building machine understandable knowledge
translated text becomes a laughable object due to out-of- representations, and a direct knowledge transfer between
context usage of translated languages. machines. Thus, XML provides a foundation for M2M

(Machine to machine). Finally, XML is also human
The JSB 12 approach explicitly addresses the above readable.
disadvantages of the middleware approach. First, the JSB 12
turns the N2 implementation issue to an order N problem. Adopting XML as a data representation standard effectively
Instead of manual implementation of each middleware case- creates multiple islands of XML'ized data language groups.
by-case, a commonly ontology is implemented. The N XSLT easily translates one XML language to another.
systems are directly connected to the ontology. Thus, only However, its capability is limited to a point-to-point
the N number of connections is implemented. Figure 4 translation. Therefore, if we rely on the standard XSLT, we
captures this concept. Then, JSB 12 automatically creates essentially recreate the middleware approach discussed
interfaces between two systems as needed. Second, the before. Instead, JSB 12 uses ontology to represent the
ontology maintains a common context. Thus, it is capable common context and to translate one XML data to another.
of resolving non-determinism of one-to-many translation Although there has been an issue related to non-standard
cases. Moreover, it updates and maintains the common representation of the ontology itself, luckily the XML
context during run-time so that it reflects the latest common industry starts to develop standard ontology representations
context among the N participating systems. The advantage such as OWL (Web Ontology Language) [5], RDF
of JSB 12 is, consequently, its implementation economy by (Resource Description Framework), etc. Therefore, the
reducing the order to Iq of the above middleware to N reuse of ontology will be greatly facilitated, and an
implementation, and its power of resolving non- incremental accumulation of ontology practically becomes
determinism with the common context. It is expected that possible.
this ontology approach will significantly reduce integration Adopting the commercial standard is crucial. The
of many (i.e., around 40 to 50) systems. Integration of 40 to commercial sector continuously improves technologies with
50 systems is a typical complexity targeted by JSB. JSB 12 their own investments, and JSB IF, which heavily leverages
is also believed to be cable of reducing the current order of the commercial technologies, will be a beneficiary. JSB IF
1 year integration time to a month or even shorter. will benefit by this recent advance in technology as well as

other technologies such as XML, etc.
The above discussion was about the semantic sub-layer of
JSB 12, which is one of the two aspects of the JSB 12. The 7. JSB HIPC APPLICATION EXAMPLES
JSB 12 has a syntactic sub-layer, and it supports the
semantic sub-layer by sending and receiving a data between Parallelized Common synthetic environment (CSE)
systems without concerning the semantic details. This sub-
layer implements this context free syntactic interoperation, JSB CSE (Common Synthetic Environment) is a fully
and this approach greatly simplifies implementation of JSB physics-based multi-spectrum correlated synthetic
12. A simple analogy of this syntactic integration layer is environment. The full physics-based nature is a unique
Lego piece's dimples. They allow for integration of Lego feature of the CSE, but it has a drawback: it demands a
pieces without worrying about the semantic baggage high-end computational resource. Currently, in the JSB

Lab, the CSE is implemented with a high end Pentium IV
processor workstation, and it can execute about 10 targets in

Anyway, the middleware approach does not facilitate such the CSE in real-time. The current single CPU architecture,
contextual transitivity relationship. Often, middleware thus, limits the applicability domain. An obvious answer isto parallelize the CSE, and make it run on a HPC (High
implementation approaches make practically impossible Porance te suc as a ieowuf Cluster.

implementation of a contextual transitivity relationship.

261

KIMAS 2003 BOSTON, USA

because it can be only achieved in an ideal situation. The
The JSB program office has constructed a small Beowulf actual speed gain is plotted against the theoretical limit,
Cluster, which has three Linux computer nodes. It is which shows the result of parallel execution of MODTRAN
designed to investigate applicability of Beowulf cluster running on the JSB Lab Beowulf Cluster with three
architecture, or in general a message based parallel processors. With the processors, the Beowulf cluster could
computer architecture for the CSE computation. Currently, achieve a 2.2 speed gain over that of a single CPU
each node is a Pentium IV 1.8GHz machine running Redhat execution. That is, the 72% of the computing capability was
Linux 7.3, and OSCAR 2.0 Beowulf software was installed contributed to achieve the overall speedup, while the 28% of
to construct the Beowulf cluster. that was wasted due to the overheads associated with the

specific JSB Lab Beowulf cluster and the specific parallel

The performance increase vs. the number of the JSB implementation of MODTRAN algorithm
Beowulf Cluster CPUs is in the following figure.

Consequently, in the world of the parallel computers, two

issues are always important:
Beowulf Cluster Speedup Factor for 1. How to make one computing task sub-divided into

Parallelized MODTRAN multiple pieces to run simultaneously on multiple
computers. That is, breaking down an algorithm

3.5 .into smaller sub-algorithms is the first issue.

3 Depending on a class of problems, this is easily
'" 2.-Theoretical Limit achieved, or sometimes it is practically impossible.LL -'•-Theoretical Limit

92 2 -. If this sub-division is properly done, a significant
.~ 1.5 -.-- JSB Beowulf speedup can be achieved.

.Speed Up 2. How to minimize various overheads associated
0.5- •.with the specific parallel computing so that the

01 speed gain achieved by the above algorithm
1 2 3 parallelization. The sources of overheads include

Number of Processors data movements
3. The unwanted cost that drains the speed gain

Figure 5: JSB Beowulf Cluster Speedup Factor for through the above algorithm parallelization is
Parallelized MODTRAN minimized. Thus, minimizing the overheads

becomes the name of the game, such as
Making multiple computers work together to solve a communication overheads associated when moving
common problem is a way to speed up program execution, data crossing CPU/machine boundaries. There are
Obviously, the more computers are involved for the same also other sources of overheads: protocol
computational problem, the faster is the resultant execution conversion, interconnection topology (number of
speed. In theory, whenever one additional computer is hops between CPUs), etc.
added, the execution should be speeded up directly
proportional to the added number of processors. In reality, It is obvious that the real gain of the parallel computer
this ideal scenario is seldom achieved. Overheads are mainly comes from the algorithm parallelization. Then the
always associated with a parallel computing. Thus, the rate gain is decreased by various overheads associated with a
of the performance increase is somewhat lower than the particular parallel computer implementation, such as the
number of added processors. For example, communication JSB Beowulf Cluster.
latency between processors is one of the major overheads2.
To speed up the overall performance, thus, all overheads JSB photo realistic Visualization Requirement
have to be minimized.

People often say that a higher resolution graphics is better.
The above graph clearly tells the story. Whenever a new However, if they are asked what the quantitative
computer is added, the overall execution speed is getting specification is, then they are hardly able to describe the
faster. However, the rate of the actual speed gain is less specifics. At best, a term, "photo realistic visualization" is
than the ideal case that can be only achieved only when commonly used, which is a subjective measure. Thus, the
absolutely no overhead is involved. In the above figure, an JSB program office has developed a specific "photo-realistic
imaginary ideal case is labeled as "Theoretical Limit" visualization" requirement for the JSB applications.

2 A special class of problem that does not require a The high-end graphic resolution (i.e., so called photo-
communication while computing a solution collectively realistic graphic resolution) for JSB applications is

(i.e., in parallel). In this case, this type of communication computed based on the AFRL (Air Force Research Lab)

overhead is so small (or sometimes practically none) that the research result - our human eyes are capable of detection

speedup factor is directly proportional to the number of the
CPUs added to the specific problem solving.

262

KIMAS 2003 BOSTON, USA

differences as small as 0.5 arc minutes3 under a high C2 constellation. Realizing the JSB's noble concept
contrast situation such as a target against a bright sky requires leveraging all existing assets (i.e., simulation
background [6]. Then to provide a full 360-degree view systems, communication infrastructures, organizations, etc)
including an overhead view, we need 467M pixels: rather than building from scratch. Thus, the JSB needs to

(360*60*2)*(90*60*2) = 467M pixels. (1) have proper and adequate capability and process that allows
for quick integration of existing assets. Many of them are

Rendering graphic images with the above level of resolution directly associated with human organization and
at a given moment is critical in order not to wash out the programmatic aspects, but a new technical break-through is
important visual cues used by a human pilot under a real air- crucial. The noble concept requires significant
to-air combat situation. This requirement is more stringent technological breakthroughs in many areas including
than that of many cockpit trainers currently available. To integration framework, modeling and simulations,
provide continuous motion pictures, the above 467M -pixel computational physics, phenomenology, human
scene has to be updated 30 times per second or more. Then factor/decision making behaviors, distributed computing,
the required number of pixels to be processed by a graphic network centric operations, multi-level securities, dynamic
computer per second is 14,01 OM pixels: VV&A, and parallel computations. Surely, many more

467M*30 = 14,010M pixels per second (2) areas have not even been mentioned here and many more
will be uncovered. As the JSB core technologies,

This numb er is roughly equivalent to 16 graphic pipes of the architectures and processes mature, the JSB will start to
latest graphics hardware technology: reach the full scope of the vision while significantly

(14,01 OM pixels/sec) / (896M pixels/sec/pipe)= impacting everyday operations of USAF and other DOD
about 16 pipes. (3) services. Some of the technologies described in this paper

are essential as a necessary step toward the "real" JSB. The
Therefore, a 16 graphic pipe system is ideal for JSB problem space is huge, and our knowledge is limited. Our
applications, current efforts will surely bear the fruits while providing

much needed valuable data moving forward to the "real"
However, the above requirement can be relaxed. A full JSB in future.
360-degree view does not have to be rendered all the time
because of the following reasons: References

1. A human pilot cannot see a full 360-degree view at 1. USAF, Joint Synthetic Battlespace For Simulation
a time. Based Acquisition, JSB Concept of Operation

2. All visible areas to a human pilot do not require to (CONOPS), 2001.
be rendered at the maximum resolution described 2. Kwak, S.D., "A Multiple Paradigm Behavior
above. Architecture: COREBA (Cognition Oriented

Emergent Behavior Architecture)", Proceedings of
That is, only the front (i.e., 120' x 900) visual area requires 1998 Fall Simulation Interoperability Workshop,
the highest resolution graphics, while the other area may be SISO, Orlando, FL, Sept. 14-18, 1998.
able to use a lower 1 arc minute resolution, which is 3. Kwak, S.D., Andrew, E.B., "Technical Challenges for
equivalent to 20/20 vision. This relaxation results in 5 Joint Synthetic Battlespace (JSB)", Proceedings of
graphic pipes for the front, and I graphic pipe to cover the 2002 Fall Simulation Interoperability Workshop,
peripheral vision as follows: SISO, Orlando, FL, Sept. 9-13, 2002

1. Detailed 120' x 90' frontal area 4 about 5 graphic 4. Moore, G.E., "Cramming more components onto
pipes are required integrated circuits", Electronics, Volume 38, Number

2. Less detailed area (180' - 1200) x 900 scene 4 8, April 19, 1965.
about I graphic pipe is enough 5. http://www.w3.org/TR/2003/WD-owl-features-

20030331/, W3C, March 2003
To support the above approach, a device that can 6. Snow, M.P., Jackson, T.W., Meyer, F.M., Reising,
continuously track the frontal eyesight area has to be J.M., Hopper, D.G., The AMLCD cockpit: promise
augmented. and payoffs, Cockpit Displays VI: Displays for

Defense Applications (pp. 103-114). Bellingham, WA:
8. SUMMARIES AND CONCLUSION International Society of Optical Engineers (SPIE),

March 1999
The JSB is a noble concept that significantly facilitates
design, analysis, development, acquisition, training, and 9. DISCLAIMER
operations of future mission oriented C2/weapon systems,
which are essentially a complex system of systems such as The author's affiliation with The MITRE Corporation is

provided for identification purposes only, and is not
3 The Snellen eye chart used by most optometrists tests a intended to convey or imply MITRE's concurrence with, or

healthy human visual acuity at 1 minute of arc, which is support for, the positions, opinions or viewpoints expressed
commonly known as 20/20 vision, by the author.

263

